DMD Spectroscopy

Yun Wang (with DMD slides from Massimo Robberto)

WFIRST SDT #2, March, 2011

Outline

- Scientific Advantages of Multi-slit Spectroscopy
- A status report on DMDs

Four Scientific Advantages of Multi-object Slit Spectroscopy

- 1) An order of magnitude improvement in efficiency of high quality supernova spectroscopy (better spectra to higher redshifts) minimizes SNe systematic errors.
- 2) A magnitude-limited spectroscopic wide survey of galaxies *minimizes BAO systematic errors*.
- 3) A larger set of spectroscopic redshifts for photometric redshift calibration *minimizes WL systematic errors*.
- 4) Greatly boosted legacy science

Getting the most distant SNe Ia:

critical for measuring the evolution in dark energy density:

Comparison of a deep survey to z~2 with a wider shallow survey to z~1.2 Wang & Lovelave (2001)

Supernovae give an independent measurement of H(z)

Spectroscopic indicators of SN Ia luminosity

• The 580/615 nm line depth ratio

Garnavich et al. (2004)

Yun Wang, 3/10/2011

- We use galaxies as BAO tracers.
- α=1: unbiased BAO scale measurement
- Results from a high resolution simulation
 - $-2.41(\text{Gpc/}h)^3$ comoving
 - Semi-analytic model of galaxy formation
 - Galaxies from a magnitudelimited sample, space density 5.4×10⁻⁴(h/Mpc)³

Angulo et al. (2008)
Yun Wang, 3/1

- A: magnitude-limited sample with $n_A=5.4\times10^{-4}(h/\text{Mpc})^3$
- B: magnitude-limited sample with $n=n_A/2$
- C: reddest 50% of galaxies from sample A
- D: 50% of sample A with the strongest emission lines, selected using the equivalent width of OII[3727]
- E: bluest 50% of galaxies from sample A
- F: 50% of sample A with weakest emission lines.

BAO scale bias: 2% for A, 3% for D

Legacy Science / Slitless

- \square 70 million galaxies & AGNs: >1000x more redshifts than now at z ~1 and >70x than SDSS!
- ☐ Statistical studies with unprecedented statistics
- \Box Clusters of galaxies (mostly at z < 1)
- ☐ Clustering and halo statistics
- ☐ The largest unbiased survey for high-z QSOs
- \square Most luminous objects at z > 7 (*Deep Survey*)
- ☐ Our Galaxy (ultracool dwarfs, IMF...), +GAIA
- Synergies: VIS/NIP, multi-λ surveys, JWST

$$Arr$$
 N(gal) $\geq 2 \times 10^8$

$$ightharpoonup V_{eff} = 50 h^{-3} Gpc^3$$

$$\square$$
 FoM = 2-3x

